Year 4 Maths Addition

 and Subtraction Workbook

Year 4 Maths Addition and Subtraction Workbook

Year 4 Programme of Study - Addition and Subtraction

Statutory Requirements	Worksheet	Page Number	Notes
Add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	Large Numbers Addition Worksheet Missing Number Three Digit Addition Addition Pyramids Worksheet 2 Repeated Subtraction of a Factor	$5-7$	8
Find Missing Numbers in Column Subtraction Sums	9		
Estimate and use inverse operations to check answers to a calculation	Estimate Answers Speed Challenge Using Inverse Operations to check Addition and Subtraction Calculations	10	11
Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.	Multi-step Problems Around the World Flights	12	
Solving Two Step Addition and Subtraction Word Problems	$13-14$		

0

$\overline{\varepsilon b^{+}}$
78ε
$0 \angle b 9$
$8 \angle 乙 8$ (u

Missing Number 3-Digit Addition

 Calculate the missing numbers in these calculations.
$\begin{array}{r}8 \ldots 6 \\ +\quad 44 \\ \hline 129 \\ \hline\end{array}$

$\begin{array}{r}89 \\ +{ }^{2}-1 \\ \hline 45= \\ \hline\end{array}$

$\begin{array}{r}+31 \\ +96 \ldots \\ \hline 10 \ldots 2 \\ \hline\end{array}$

$\begin{array}{r}91 \ldots \\ +\quad 3 \ldots 5 \\ \hline-\quad 24 \\ \hline\end{array}$

$\begin{array}{r}9 \quad 8 \\ +\quad 41 \\ \hline 176= \\ \hline\end{array}$

 Addition Pyramids Worksheet 2

Use addition and subtraction calculations to complete these pyramids. The first one has been done for you. Addition Pyramids Worksheet 3

Finding Missing Numbers in Column Subtraction Calculations Use these digit cards just once to fill all of the gaps in the calculations.
0

23 4 5
6

89

657

871
-359
-452
284
-199
$29 \square$
$67 \square$

$1 \square 69$
2612
-878
41
$\begin{array}{r}-275 \\ \hline 1094\end{array}$
$-17 \square 8$
854

3269
$5 \square 12$
$8 \square 08$
$\begin{array}{r}-1652 \\ \hline \square 617\end{array}$
$\begin{array}{r}-693 \\ \hline 4719\end{array}$
-4782

	$\stackrel{\rightharpoonup}{\square}$	مـ	∞	\checkmark	9	¢	$\stackrel{+}{+}$	ω	N	$\stackrel{\rightharpoonup}{\square}$	
$\begin{aligned} & \text { O. } \\ & \text { O. } \\ & \stackrel{1}{4} \end{aligned}$	$\begin{aligned} & 0 \\ & + \\ & + \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & + \\ & + \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { Y } \\ & + \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 太 } \\ & + \\ & \text { م } \end{aligned}$	$\begin{aligned} & N \\ & \hline+ \\ & + \\ & \underset{\omega}{\infty} \end{aligned}$	$\begin{aligned} & \text { G } \\ & \infty \\ & + \\ & \infty \end{aligned}$	$\begin{aligned} & \omega \\ & \text { د } \\ & + \\ & \text { N } \end{aligned}$	$\begin{aligned} & \omega \\ & \omega \\ & + \\ & \underset{\sim}{\omega} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & + \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & + \\ & \omega \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\Gamma}{n} \\ & \underset{\sim}{7} \end{aligned}$
	$\begin{aligned} & \infty \\ & + \\ & + \\ & \stackrel{\rightharpoonup}{\sigma} \end{aligned}$	$\begin{aligned} & \infty \\ & \mathrm{N} \\ & + \\ & \text { + } \\ & \mathrm{N} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{v} \\ & + \\ & \dot{\sim} \\ & \infty \end{aligned}$	$\begin{aligned} & 0 \\ & + \\ & + \\ & \underset{\sim}{c} \\ & \mathcal{M} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & + \\ & N \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { o } \\ & + \\ & N \\ & \text { N } \\ & \end{aligned}$	$\begin{aligned} & \omega \\ & + \\ & + \\ & \sim \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & + \\ & + \\ & \stackrel{\rightharpoonup}{\hat{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{v} \\ & + \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & + \\ & \stackrel{\rightharpoonup}{N} \end{aligned}$	$\begin{aligned} & \text { 「. } \\ & \stackrel{y}{n} \\ & \sim \end{aligned}$
	$\begin{aligned} & \omega \\ & \text { A } \\ & + \\ & + \\ & \text { a } \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & + \\ & + \\ & \text { م} \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & + \\ & + \\ & N \end{aligned}$	$\begin{aligned} & \hat{U} \\ & + \\ & \mathbf{\omega} \\ & \stackrel{N}{N} \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{\omega}{N} \\ & + \\ & + \\ & \omega \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\alpha} \\ & + \\ & + \\ & \stackrel{\rightharpoonup}{J} \end{aligned}$	$\begin{aligned} & \omega \\ & \stackrel{1}{\sigma} \\ & + \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & + \\ & \omega \\ & N \\ & \hline \end{aligned}$	$\begin{aligned} & \vec{\omega} \\ & \underset{\sigma}{1} \\ & + \\ & \vec{\omega} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & + \\ & + \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$	$\begin{aligned} & \stackrel{\Gamma}{n} \\ & \stackrel{1}{\omega} \end{aligned}$
	$\begin{aligned} & \hat{\infty} \\ & \stackrel{\rightharpoonup}{\omega} \\ & + \\ & \infty \\ & \infty \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & \text { O } \\ & + \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & v \\ & + \\ & \underset{y}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{A}{\mathrm{G}} \\ & \stackrel{N}{N} \\ & + \\ & \mathbf{N} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { o } \\ & \dot{\circ} \\ & \infty \\ & + \\ & \omega \\ & \hline- \\ & \hline \end{aligned}$	$\begin{aligned} & \text { G } \\ & 0 \\ & 0 \\ & + \\ & \text { + } \\ & \text { o } \end{aligned}$		$\begin{aligned} & \omega \\ & \stackrel{N}{G} \\ & \sigma \\ & + \\ & \stackrel{A}{心} \\ & \underset{i}{2} \end{aligned}$		$\begin{aligned} & \vec{N} \\ & \underset{\omega}{u} \\ & + \\ & \stackrel{\rightharpoonup}{0} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { F. } \\ & \stackrel{y}{n} \\ & \underset{\sim}{n} \end{aligned}$

[^0]

Using Inverse Operations to Check Addition and Subtraction Calculations

Check the answers to these calculations using the inverse operation and mark them right or wrong!

	Calculation	Check with Inverse	Correct?
e.g.	$\begin{array}{rrl} 5 & 5 & 7 \\ - & 7 & 8 \\ 2 & 7 & 7 \\ & \text { work backwards! } \\ \hline \end{array}$	$277+278=555$	Wrong!
1.	$\begin{array}{r} 87 \\ +\quad 446 \\ \hline 459 \end{array}$		
2.	$\begin{array}{r}144 \\ -\quad 75 \\ \hline 69\end{array}$		
3.	$\begin{array}{r}367 \\ +459 \\ \hline 826\end{array}$		
4.	$\begin{array}{r}674 \\ -596 \\ \hline 182\end{array}$		
5.	$\begin{array}{r}286 \\ +\quad 378 \\ \hline 1662\end{array}$		
6.	$\begin{array}{r}1342 \\ -478 \\ \hline 942\end{array}$		
7.	$\begin{array}{r}2786 \\ +1512 \\ \hline 4299\end{array}$		
8.	$\begin{array}{r}2457 \\ -1687 \\ \hline 770\end{array}$		

[^1]

[^0]:

[^1]:

